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ABSTRACT The maximum performance to be obtained by applying the Proportion-Integral-

Derivative (PID)  controller on a system depends on the optimum adjustment of its parameters. 

This study aims to present a design method for tuning the PID control parameters. In this method, 

PID controller design is made based on the optimal proportional gain from the system to the 

desired settling time and overshoot. The infrastructure of the technique is based on obtaining the 

other PID controller parameters by adjusting the optimum proportional gain (kp), which 

minimizes the settling time in a stable loop and the error rate of the overshoot. Routh Hurwitz 

criterion is used to guarantee stability in the control system. The effectiveness of the proposed 

method is tested as an active control application of the PID controller on a single degree of 

freedom (SDOF) structural system. The efficiency of the PID controller designed with this 

method, which does not require the destruction of parameters and does not contains complex 

mathematical formulations, is proven by its successful suppression of SDOF structural system 

responses.  
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1. INTRODUCTION 

Control of structural systems is a current and vital issue. Damage to any part of a structure under the 

influence of external disturbances, such as crack formation in its beams [1,2], may damage the entire 

system. For this reason, control applications are one of the most effective methods to protect the 

structures from damage and the safety of the occupants. Although there are many control applications 

in the process control industry, PID control is widely used and maintains its importance due to its low 

cost, simple structure, and wide application area [3]. Therefore, improvements in the design methods 

of the PID controller will increase the performance of this controller. In general, the PID controller, 

which is obtained with an efficient design method, should respond optimally to the design features and 

be robust against uncertainties. For the PID controller's performance on the applied system to be at the 

maximum level, its parameters must be set correctly. The Ziegler and Nichols method is the oldest 

method used to set PID control parameters [4]. However, in the performance of the PID control obtained 

with this method, negative effects such as high settling time and overshoot arise. Therefore, the obtained 

answers need to be improved.  In another study [5], in which a different method was proposed for the 

proportional gain value, it was determined that negative responses were obtained for time delay systems.  

Other standard methods in the literature include; gain and phase margin method [6,7], Astrom and 

Haggland method [8], optimization method [9,10], direct synthesis method [11], the weighted geometric 

center method [12,13]. In addition, many studies suggest new control methods [14-18]. For example, 

PID controller design using stability limit position matching [19], near-optimal PID controller design 
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with interval arithmetic approach [20], PID controller design with numerical optimization approach 

[21] are suggested methods. 

In this study, a new approach is discussed to determine the optimum PID parameters. In the proposed 

method, first of all, the desired settling time and overshoot values are defined in the closed-loop system 

response, then the proportional gain kp, which will minimize the error rates of the expected settling time 

and overshoot values from the system, is determined with a loop formed in the stable area. Based on 

the obtained kp value, the other parameters of the PID controller, ki and kd, are calculated. This proposed 

simple adjustment method has some advantages over other methods in the literature. The solution 

processes are simple as there is no need for complex mathematical equations, and there is a high chance 

of getting maximum efficiency as optimization occurs. The efficiency of the PID controller obtained 

with the proposed method in this study is tested on an SDOF structural system. 

2. EQUATION OF MOTION 

Control of structural systems is an area that remains popular today. As a result, both single-degree-

of-freedom (SDOF) and multi-degree-of-freedom (MDOF) system models have been frequently used 

in studies. In this study, the SDOF structural system used to test the designed control performance is 

shown in Figure 1. 

 

Figure 1. SDOF system 

The control force acts on the system from outside. The equation of motion of the system is seen in 

Eq. (1). 

Mẍ(t) + Cẋ(t) + Kx(t) = −fu(t) − Mẍg        (1) 

Here, M, C, and K denote the system's mass, damping, and stiffness values, respectively. fu is the 

control force and ẍg is the acceleration excitation of the system. Parameter of the system are M= 107.5 

kg, K= 145152 N/m, C= 6.7646 N.s/m. 

3. DETERMINATION of PID PARAMETERS and CONTROLLER DESIGN 

Both semi-active [22, 23] and active control [24] applications are widely studied in structural 

systems. Active control is an indispensable choice in obtaining the best performance from these 

systems. In this study, the active control of the SDOF structural system is investigated by obtaining the 

optimum parameters of the PID controller with a new approach. The PID control method remains 

essential because it has been widely used and can be easily applied to systems [25]. In the most general 

case, the block diagram of the unit feedback control system is shown in Figure 2. 
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Figure 2. Feedback control system 

Here, C(s) given in Eq. (2) and G(s) shown in Eq. (3) represent the transfer function of the PID 

controller and SDOF system, respectively. Here r, y and e denote the input, output of the system and 

error rate, respectively. 

C(s) = kp +
ki

s
+ kds          (2) 

Gs =
GN(s)

GD(s)
           (3) 

By arranging Eq. (2), the controller equation, in general, is obtained as follows. 

C(s) =
(kds

2+kps+ki)

s
           (4) 

The closed-loop system T(s) is obtained as in Eq. (5) using Eq. (4). 

T(s) =
C(s)G(s)

1+(C(s)G(s))
          (5) 

T(s) is obtained by substituting Eq. (3) and Eq. (4) in Eq. (5) as follows. 

T(s) =
GN(s)(kds

2+kps+ki)

GD(s)s+GN(s)(kds
2+kps+ki)

=
TN(s)

TD(s)
        (6) 

TD(s) is the characteristic equation of the system, and its degree is determined. Then, settling time ts 

and overshoot Mp value are determined according to system performance. The damping rate of the 

system is calculated by Eq. (7), and its natural frequency is calculated by Eq. (8). 

ζ =
−log⁡(Mp)

√π2+log(Mp)
2
           (7) 

wn =
4

ζts
           (8) 

The target polynomial equation of the closed-loop system is as follows. 

Δ(s) = s2 + 2ζwns + wn
2         (9) 

Here, a residue polynomial (R(s)) must be defined since Δ(s) is of order 2.  Also, the variable number 

of R(s) should be equal to the degree difference (m) between TD(s) and Δ(s). 
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R(s) =

{
 

 
s + a,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡m = 1

s2 + a1s + a2,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡m = 2

s3 + a1s
2 + a2s + a3,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡m = 3

sn + a1s
n−1 + a2s

n−2 +⋯ans
n−m,⁡⁡⁡⁡⁡⁡m = n

⁡⁡⁡⁡ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(10) 

The fact that the variables expressed in Eq. (10) are a1, a2, a3…an ∈ R   allows it to cover all solutions 

and keep the system free of complexity. The condition to be satisfied here is that the coefficients of the 

product of Δ(s) and R(s) are equal to the system's characteristic equation coefficients, as seen in Eq. 

(11). 

(Δ(s)R(s))coeff ≡ TD(s)coeff         (11) 

In Eq. (11), it is seen that the number of variables is one more than the number of significant 

equations. Therefore, to equalize the number of equations, the number of variables is reduced by one 

by subtracting kp from the variables (kp, ki, kd, a1, a2…aN). Then, by solving Eq. (11) again, it is ensured 

that the variables contain terms with kp. As a result, the existence of a multiple-choice solution emerges. 

Initially, Δ(s) is chosen as stable. Also, the R(s) polynomial must also check for stability. For stability, 

it is sufficient that the variables (a1, a2…aN) in R(s) are positive. As a result, the flowchart in Figure 2 

is followed to set the PID parameters optimally. 

After the variables are determined as positive, values are assigned to kp in a specific interval and 

incremental cycle, and the variables (kp, ki, kd, a1, a2…aN) and the ts and Mp values of the system are 

determined. The aim here is to obtain a value as close as possible to the expected (desired) value of ts 

and Mp. Therefore, the error rates of ts and Mp, which need to be normalized, are assigned the variables 

e1 and e2, respectively. 

e1 =
Mp−Mpans

Mp
          (12) 

e2 =
ts−tsans

ts
           (13) 

By combining Eq. (12) and Eq. (13), Eq. (14) is obtained to show a single error.  

err = xe1 + ye2          (14) 

Here, x, y are the coefficients affecting the total error, and x and y values are selected according to 

the importance expected from the system and x+y=1. The err value obtained is also added to the loop 

and determined according to kp. Finally, PID controller parameters kp, ki and kd are accepted according 

to the errmin value specified due to the loop. 
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3.1 PID CONTROLLER DESIGN 

To determine the effectiveness of the method proposed in Section 3, a comparison is made with the 

PID controller tuning using the Matlab-Simulink Toolbox. In simulations, settling time, overshoot, peak 

time, and rise time are considered evaluation criteria. The transfer function of the model of the system 

in Figure 1 is as follows. 

G(s) =
0.0093023

s2+0.062927s+1350.2512
        (15) 

First of all, 0.01 % overshoot and 0.2 s settling time are expected performance values from the 

system. The residual polynomial is treated as in Eq. (17) (m=1). 

R(s) = s + a           (16) 

Therefore, the expression a = 0.0004651*kp + 60.19 is obtained with the proposed method, and it is 

sufficient for the variable a to be positive for the stability criterion. Therefore, for kp, the interval value 

kp = [-100000,10000000] is selected in increments of 0.1. A loop is created by selecting the total error 

value as in Equation 14. 

The parameters of the PID controller, from which the errmin value is obtained in the performed cycle, 

are given in Table 1. By applying the PID-1 control created in Matlab-Simulink Toolbox and the PID-

2 control obtained by the proposed method to the system, unit step responses in the closed-loop are 

given in Figure 3. In addition, the bode and root locus graphs of the system with the PID-2 controller 

are shown in Figure 4 and Figure 5, respectively. In the characteristic equation for the whole closed-

loop, the roots are in the left half of the 's' plane. Therefore, the system is stable. In the unit step response 

with the designed PID-2 controller, a better (%) overshoot value and peak time are obtained as well as 

much better settling time. Performance criteria of PID-1 and PID-2 controllers are given in Table 1. It 

can be clearly said that the proposed PID-2 controller performs better than PID-1. 

 

Figure 3. Step responses for the system. 
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Figure 4. Bode response for the system 

 

Figure 5. Root locus response for the system 

Table 1. Controllers parameters and values of the performance criteria for the system 

PID controller gain Values of the performance criteria 

 
kp ki kd Settling time (s) Overshoot (%) 

Rise time 

(s) 

Peak time 

(s) 

PID-1 1750824.3 

 

5818890.3 

 

47747.115 

 

0.4577 4.0177 0.0041 0.0110 

PID-2 9999900 

 

7.4216e+07 

 

5.0861e+05 

 

7.9226e-04 0.2762 4.5876e-04 0.0015 

 

4. SIMULATION STUDIES 

The system performance in El-Centro and Northridge earthquake excitations has been investigated 

by applying a PID controller to the model in Figure 1. The efficiency of the determined PID parameters 
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has been compared with the parameters obtained using the Matlab-Simulink Toolbox. Among the 

applied control states, PID-1 represents the controllers, which are the parameters determined by the 

Matlab-Simulink toolbox, and PID-2, the parameters obtained with the proposed method.  In addition, 

the displacement and acceleration responses of the SDOF system have been examined as evaluation 

criteria. Figure 6 and Figure 7 show the displacement responses of the system, and Figure 8 and Figure 

9 show the acceleration responses of the system. In the displacement responses of the El-Centro and 

Northridge earthquake excitations in Figure 6 and Figure 7, respectively, both controllers successfully 

suppressed the system responses. But the best performance has been obtained in the PID-2 control case. 

 

Figure 6. Displacement responses of the system under the El-Centro Earthquake 

 

Figure 7. Displacement responses of the system under the Northridge Earthquake 

 

In Figure 8 and Figure 9, acceleration responses in El-Centro and Northridge earthquake excitations, 

similar to displacements, both controllers successfully suppressed the system responses, and the best 

performance has been obtained in the PID-2 control condition. 
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Figure 8. Acceleration responses of the system under the El-Centro Earthquake 

 

Figure 9. Acceleration responses of the system under the Northridge Earthquake 

 

5. CONCLUSION 

In this study, a design method is presented for optimum tuning of PID controller parameters. In the 

proposed method, other PID controller parameters are determined in response to the optimum 

proportional gain (kp) setting in a stable loop so that the error rate of ts and Mp is minimized. The 

effectiveness of this method, which has the advantages of not destroying parameters and not involving 

the complex mathematical formulation, is tested in an SDOF structural system under the influence of 

El-Centro and Northridge excitations. In addition, the performance of the PID controller (PID-2) 

obtained by the proposed method is compared with the controller (PID-1) obtained with the Matlab-

Simulink PID toolbox. 

The results reveal that PID-2 is not only effective at suppressing system responses but also 

outperforms PID-1. 

M. Haskul and M. Kisa, Free-vibration analysis of cracked beam with constant width and linearly varying thickness, Emerging 

Materials Research, vol. 11, no. 1, pp. 1-13, Mar. 2022. 
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